Skip to content
CFA-MFR de Coutances

UNE ECOLE, DES STAGES, UN METIER !

IENT

RNE – UAI : 0501736R | Numéro de déclaration d’activité : 25 50 0087550 | SIRET : 780 878 542 000 15

  • Formations en Alternance
  • Formations par Apprentissage
  • Formations continues
  • Association
    • Projet d’établissement
    • MFR: une association familiale
    • Les familles au cœur du mouvement
    • L’orientation et l’accompagnement
    • « La Vie Des Eleves » écrit par les élèves
  • Locations
  • Espace Privé
    • EXTRANET
    • INTRANET
  • Toggle website search
Menu Fermer
  • Formations en Alternance
  • Formations par Apprentissage
  • Formations continues
  • Association
    • Projet d’établissement
    • MFR: une association familiale
    • Les familles au cœur du mouvement
    • L’orientation et l’accompagnement
    • « La Vie Des Eleves » écrit par les élèves
  • Locations
  • Espace Privé
    • EXTRANET
    • INTRANET
  • Toggle website search
  • Formations en Alternance
  • Formations par Apprentissage
  • Formations continues
  • Association
    • Projet d’établissement
    • MFR: une association familiale
    • Les familles au cœur du mouvement
    • L’orientation et l’accompagnement
    • « La Vie Des Eleves » écrit par les élèves
  • Locations
  • Espace Privé
    • EXTRANET
    • INTRANET
  • Toggle website search

Mathématiques

  1. Accueil>
  2. Les Cours en E-learning, j’étudie à mon rhytme>
  3. Cours>
  4. BAC
  • Accueil
  • Les Cours en E-learning, j’étudie à mon rhytme
  • BAC
  • Mathématiques

Mathématiques

Détails

  • 12 Sections
  • 39 Lessons
  • Durée de vie
Expand all sectionsCollapse all sections
  • Statistiques à une variable
    5
    • 2.0
      Mémo
    • 2.1
      Extrait notice calculatrice CASIO Graph 25+
    • 2.2
      Travaux dirigés : Extraits de sujets d’examen N°1
    • 2.3
      Travaux dirigés : Extraits de sujets d’examen N°2
    • 2.4
      Evaluations statistiques + corrigés
  • Probabilités
    3
    • 3.1
      Situations relevant d’une loi normale
    • 3.2
      Règle du produit, règle de la somme en probabilité
    • 3.4
      Travaux dirigés : Extraits de sujet d’examen
  • Suites numériques
    5
    • 4.0
      Les notions de base : suites arithmétiques et suites géométriques
    • 4.1
      Travaux dirigés : La croissance du bambou et les suites numériques
    • 4.2
      Exercices + corrigés
    • 4.3
      Exercice d’application + correction
    • 4.4
      Travaux dirigés : Extraits de sujet d’examen + correction + programmation calculatrice
  • Problèmes de second degré
    3
    • 5.1
      Etude de la variation d’une fonction de second degré
    • 5.3
      TD : Initiation au langage BASIC sur la calculatrice CASIO
    • 5.4
      TD : Initiation au langage PYTHON sur ordinateur
  • Tangente à une courbe
    4
    • 6.1
      Activité : virage de nuit
    • 6.2
      Activité : Un problème d’échelle
    • 6.3
      Activité : zoom-zoom
    • 6.4
      Travaux dirigés : Extraits de sujet d’examen
  • Fonctions dérivées
    4
    • 7.1
      Activité : Superficie d’une fenêtre
    • 7.2
      Activité : Convoyeur
    • 7.3
      Activité : Optimisation de bénéfices
    • 7.4
      Travaux dirigés : Extraits de sujet d’examen
  • Etude de fonctions
    4
    • 8.1
      Activité : Enclos pour compostage
    • 8.2
      Activité : Bassin aquatique
    • 8.3
      Activité : Cerf-volant
    • 8.4
      Travaux dirigés : Extraits de sujet d’examen
  • Tableau de contingence
    4
    • 9.1
      Activité : L’usage des TIC dans les entreprises
    • 9.2
      Activité : Observations et surveillance des troupeaux
    • 9.3
      Activité : Saison touristique
    • 9.4
      Travaux dirigés : Extraits de sujet d’examen
  • Probabilités conditionnelles
    4
    • 10.1
      Activité : Répartition des élèves dans un établissement scolaire
    • 10.2
      Activité : Mâles et femelles dans un troupeau
    • 10.3
      Activité : Rendement agricole et conditions climatiques
    • 10.4
      Travaux dirigés : Extraits de sujet d’examen
  • Fonction exponentielle (e^x)
    1
    • 11.4
      Travaux dirigés : Extraits de sujet d’examen
  • Fonction Logarithme népérien (ln x)
    1
    • 12.4
      Travaux dirigés : Extraits de sujet d’examen
  • Primitives - Calcul intégral
    1
    • 13.4
      Travaux dirigés : Extraits de sujet d’examen

Travaux dirigés : Extraits de sujet d’examen

PARTIE A

Un vétérinaire administre un traitement par voie intraveineuse à une brebis. La quantité initiale de médicament dans le sang de la brebis est alors de 18 mg.L-1.
La quantité de médicament, en mg.L-1, qui reste dans le sang de la brebis au bout de x heures est donnée par la fonction f définie sur l’intervalle [0 ; 16] par : f(x) = 18e-0,15x.

1. Calculer f ’(x) pour tout x appartenant à l’intervalle [0 ; 16].

ELEMENTS DE CORRECTION

A partir du formulaire situé en fin de sujet, nous pouvons écrire :

f ‘ (x) = 18 . (-0,15) . e-0,15x soit f ‘ (x) = – 2,7 e-0,15x

2. Justifier que f ’(x) est négatif pour tout x appartenant à l’intervalle [0 ; 16]. En déduire les variations de f sur l’intervalle [0 ; 16].

ELEMENTS DE CORRECTION

Pour tout x, l »exponentiel d’un nombre négatif est positif. le coefficient -2,7 étant négatif. Selon la règle des signes, le résultat sera toujours négatif.

Si le signe de la fonction dérivée f ‘ est négatif, alors cela signifie que le sens de variation de la fonction f est décroissante.

3. Compléter le tableau de variations de la fonction donné ci-dessous. On donnera les valeurs exactes ou approchées de f(0) et de f(16).

ELEMENTS DE CORRECTION

4. Compléter le tableau de valeurs de la fonction f fourni ci-dessous. (les résultats sont arrondis à 10-1 près).

ELEMENTS DE CORRECTION

5. Le traitement cesse de faire effet lorsque la quantité de médicament dans le sang de la brebis est inférieure à 4 mg.L-1. Déterminer au bout de combien d’heures le traitement cesse de faire de l’effet.

ELEMENTS DE CORRECTION

Le traitement cessera de faire effet au bout de 10 heures.

PARTIE B

La quantité moyenne de médicament dans le sang de la brebis par heure lors des 12 premières heures est donnée par la formule suivante :

On considère la fonction F définie sur [ 0 ; 16] par : F(x) = -120e-0,15x.

1. Démontrer que F est une primitive de f.

A partir du formulaire situé en fin de sujet, nous pouvons écrire :

F(x) = 18 / (-0,15) e – 0,15 x soit F(x) = -120 e – 0,15 x

2. Calculer

Donner la valeur exacte de I, puis la valeur arrondie à 10-2 près.

ELEMENTS DE CORRECTION

Méthode 1

Le résultat de l’intégrale I est 100,16 à 10-2 près.

3. Calculer la quantité moyenne de médicament dans le sang de la brebis par heure lors des 12 premières
heures. Donner la valeur à 10-2 près.

Méthode 2

F(12)-F(0) = 19,9 – 120 = 100,16…

Méthode 3

Utiliser le lien ci-dessous pour calculer en ligne l’intégrale d’une fonction sur un intervalle.

https://www.dcode.fr/integrale-intervalle

ELEMENTS DE CORRECTION

A partir du résultat précédant et de la formule fournie dans l’énoncé, nous pouvons écrire :

La quantité moyenne de médicament dans le sang de la brebis par heure lors des 12 premières heures est 8,35 mg.L-1

___________________________________________

FORMULAIRE

Travaux dirigés : Extraits de sujet d’examen
Préc.
Travaux dirigés : Extraits de sujet d’examen
Suivant

CFA MFR DE COUTANCES

Formations par Alternance et par Apprentissage

Une voie d’excellence pour se former à des métiers

CERTIFICATION QUALIOPI

Certificat n° FR089351-1

CATEGORIES D’ACTIONS CONCERNEES :

L. 6313-1 – 1° Les actions de formation
L. 6313-1 – 4° Les actions de formation par apprentissage, au sens de l’article L. 6211-2.

PAP accompagnement de certains handicaps

Nos formations sont adaptées aux personnes en situation de handicap (sous certaines conditions)

Nous contacter

Mentions légales

Politique de protection des données

Conditions générales de vente des formations

Fédération Territoriale des MFR Ouest Normandie

Fédération Régionale des MFR de Normandie

Union Nationale des MFREO – Paris

© 2023  CFA-MFR Coutances, tous droits réservés

Modal title

Main Content