Skip to content
CFA-MFR de Coutances

UNE ECOLE, DES STAGES, UN METIER !

IENT

RNE – UAI : 0501736R | Numéro de déclaration d’activité : 25 50 0087550 | SIRET : 780 878 542 000 15

  • Formations en Alternance
  • Formations par Apprentissage
  • Formations continues
  • Association
    • Projet d’établissement
    • MFR: une association familiale
    • Les familles au cœur du mouvement
    • L’orientation et l’accompagnement
    • « La Vie Des Eleves » écrit par les élèves
  • Locations
  • Espace Privé
    • EXTRANET
    • INTRANET
  • Toggle website search
Menu Fermer
  • Formations en Alternance
  • Formations par Apprentissage
  • Formations continues
  • Association
    • Projet d’établissement
    • MFR: une association familiale
    • Les familles au cœur du mouvement
    • L’orientation et l’accompagnement
    • « La Vie Des Eleves » écrit par les élèves
  • Locations
  • Espace Privé
    • EXTRANET
    • INTRANET
  • Toggle website search
  • Formations en Alternance
  • Formations par Apprentissage
  • Formations continues
  • Association
    • Projet d’établissement
    • MFR: une association familiale
    • Les familles au cœur du mouvement
    • L’orientation et l’accompagnement
    • « La Vie Des Eleves » écrit par les élèves
  • Locations
  • Espace Privé
    • EXTRANET
    • INTRANET
  • Toggle website search

Mathématiques

  1. Accueil>
  2. Les Cours en E-learning, j’étudie à mon rhytme>
  3. Cours>
  4. BAC
  • Accueil
  • Les Cours en E-learning, j’étudie à mon rhytme
  • BAC
  • Mathématiques

Mathématiques

Détails

  • 12 Sections
  • 39 Lessons
  • Durée de vie
Expand all sectionsCollapse all sections
  • Statistiques à une variable
    5
    • 2.0
      Mémo
    • 2.1
      Extrait notice calculatrice CASIO Graph 25+
    • 2.2
      Travaux dirigés : Extraits de sujets d’examen N°1
    • 2.3
      Travaux dirigés : Extraits de sujets d’examen N°2
    • 2.4
      Evaluations statistiques + corrigés
  • Probabilités
    3
    • 3.1
      Situations relevant d’une loi normale
    • 3.2
      Règle du produit, règle de la somme en probabilité
    • 3.4
      Travaux dirigés : Extraits de sujet d’examen
  • Suites numériques
    5
    • 4.0
      Les notions de base : suites arithmétiques et suites géométriques
    • 4.1
      Travaux dirigés : La croissance du bambou et les suites numériques
    • 4.2
      Exercices + corrigés
    • 4.3
      Exercice d’application + correction
    • 4.4
      Travaux dirigés : Extraits de sujet d’examen + correction + programmation calculatrice
  • Problèmes de second degré
    3
    • 5.1
      Etude de la variation d’une fonction de second degré
    • 5.3
      TD : Initiation au langage BASIC sur la calculatrice CASIO
    • 5.4
      TD : Initiation au langage PYTHON sur ordinateur
  • Tangente à une courbe
    4
    • 6.1
      Activité : virage de nuit
    • 6.2
      Activité : Un problème d’échelle
    • 6.3
      Activité : zoom-zoom
    • 6.4
      Travaux dirigés : Extraits de sujet d’examen
  • Fonctions dérivées
    4
    • 7.1
      Activité : Superficie d’une fenêtre
    • 7.2
      Activité : Convoyeur
    • 7.3
      Activité : Optimisation de bénéfices
    • 7.4
      Travaux dirigés : Extraits de sujet d’examen
  • Etude de fonctions
    4
    • 8.1
      Activité : Enclos pour compostage
    • 8.2
      Activité : Bassin aquatique
    • 8.3
      Activité : Cerf-volant
    • 8.4
      Travaux dirigés : Extraits de sujet d’examen
  • Tableau de contingence
    4
    • 9.1
      Activité : L’usage des TIC dans les entreprises
    • 9.2
      Activité : Observations et surveillance des troupeaux
    • 9.3
      Activité : Saison touristique
    • 9.4
      Travaux dirigés : Extraits de sujet d’examen
  • Probabilités conditionnelles
    4
    • 10.1
      Activité : Répartition des élèves dans un établissement scolaire
    • 10.2
      Activité : Mâles et femelles dans un troupeau
    • 10.3
      Activité : Rendement agricole et conditions climatiques
    • 10.4
      Travaux dirigés : Extraits de sujet d’examen
  • Fonction exponentielle (e^x)
    1
    • 11.4
      Travaux dirigés : Extraits de sujet d’examen
  • Fonction Logarithme népérien (ln x)
    1
    • 12.4
      Travaux dirigés : Extraits de sujet d’examen
  • Primitives - Calcul intégral
    1
    • 13.4
      Travaux dirigés : Extraits de sujet d’examen

Ligne d’horizon et points de fuite en dessin d’art

La vision

La vision de nos trois traits au sol peut changer, comme tout élément de la scène.

Voici les paramètres qui peuvent changer la perspective d’un objet : la hauteur de notre œil par rapport au sol (=horizon =ligne de vision)

Le point de vue : là où nous nous tenons lorsqu’on observe un objet

Les points de fuite : points vers lesquels deux lignes parallèles semblent converger vers l’horizon.

Un bon exemple pour illustrer ce phénomène : si vous êtes sur la plage et que vous regardez au loin, vous vous apercevrez que plus vous regardez loin, et plus les détails des vagues sembleront petits.
D’ailleurs on ne voit presque plus aucun détail aux alentours de l’horizon. Sans ce phénomène de perspective, nous verrions aussi
bien de près que de loin et toutes les vagues seraient de la même taille.

Une perspective ne s’applique pas à une scène entière, mais à un seul objet d’une même scène. Ce qui signifie que pour une même scène visuelle, et pour une même ligne de vision, on pourra représenter des objets à un, deux ou trois points de fuite, sans que ces points de fuite soient les mêmes pour tous les objets.

Bien qu’il s’agisse du plus rapide de tous les cas de figure de la perspective, ce n’est pas aussi simple qu’on pourrait le croire. Le piège de la perspective à un point de fuite est qu’une bonne partie de l’objet est dissimulée derrière l’avant plan de ce dernier.

Bien qu’un peu plus lente à construire, la perspective à deux points de fuite révèle plus d’informations sur l’objet que la perspective à un point de fuite.

Les erreurs courantes dans la construction de la perspective

  1. Placer ses points de fuite trop près les uns des autres.
  2. Représenter un cube ou parallélépipède rectangle avec une discordance de point de fuite entre une face et une autre.
  3. Ne pas placer les points de fuite sur la même ligne de vision.
  4. Montrer trop d’une face d’un cube dans un dessin à deux points de fuite et faire comme s’il ne s’agissait que d’une perspective à un point de fuite.
  5. Représenter une table avec les pieds arrière trop bas. La perspective d’une table simple est aussi facile à représenter que celle d’un cube.
  6. Représenter un personnage ou un objet au premier plan qui n’est pas au bon niveau par rapport aux autres éléments de la scène.
  7. Projeter un motif aléatoirement.

CFA MFR DE COUTANCES

Formations par Alternance et par Apprentissage

Une voie d’excellence pour se former à des métiers

CERTIFICATION QUALIOPI

Certificat n° FR089351-1

CATEGORIES D’ACTIONS CONCERNEES :

L. 6313-1 – 1° Les actions de formation
L. 6313-1 – 4° Les actions de formation par apprentissage, au sens de l’article L. 6211-2.

PAP accompagnement de certains handicaps

Nos formations sont adaptées aux personnes en situation de handicap (sous certaines conditions)

Nous contacter

Mentions légales

Politique de protection des données

Conditions générales de vente des formations

Fédération Territoriale des MFR Ouest Normandie

Fédération Régionale des MFR de Normandie

Union Nationale des MFREO – Paris

© 2023  CFA-MFR Coutances, tous droits réservés

Modal title

Main Content